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1. INTRODUCTION AND SUMMARY

This paper is concerned with the problem of best estimation, i.e.,
minimum variahce unbiased estimation (mvue), of certain functions of the
parameter © and the truncation points of a power series distribution
(PSD) truncated on the left at several known or unknown truncation
points. More specifically, given k independent random samples Xij’

J =1, ccs, ., i=1, ..., k, the ith sample from the PSD with prob-

ability function

X
ai(x) 9
= = = = . =+ .o .
(1.1) pl(x) P[le x] T , t=r,, r,+1, » Ny
1
where
N,
1 x
(1.2) £.(0,r.) = } a,(x) 6", (N, finite or infinite) ,
1 1 = 1 1
i

it is desired to estimate some function of 6, including pi(x) itself;
mvue are also provided for the truncation points Tos coes Ty

Estimability conditions for certain functions of the parameter 6

of a one-parameter PSD with probability function
(1.3) P[x=x_]=——(§7—,xeT (6 > 0)

where T(:Io, IO the set of non-negative integers, were given by Patil

[1963]. Thus it was shown that, on the basis of a random sample of size



n > 1 from (1.3), © is estimable, i.e., it has an unblased estimator
if, and only if,

(1.4) nlT] = smin(n[T]> R

where

niT] = T 4T, + ...+ T . with T. =T, (i =1, ..., n)

and Sa denotes the tail set of a, that is,

S =1{x : xel and x > a}
a o —_

In particular, (1.4) implies that 6 is not estimable whenever T is
a finite set, e.g., B = p/q in the binomial ~ase. On the other hand,

6 1s estimable if

where r denotes the truncaticn point, assumed known. This situation
includes the Poisson, the logaritbmic series and the negative binomial
distributions truncated on the left at a known point. In fact, Roy and
Mitra [1957] provide the mvue of Ga for any integer o > O in the

form

_ Alx-a,n,r)
(1.5) ea T Alx,n,r)



where

(1.6) Alx,n,r) = 2 a(x. ) . alx )
1 n
the summation extending over all n-tuples (xl, cees xn) of integers
X, >r with x + ... +x = X.
i-— 1 n

The corresponding case when the truncation point r is unknown was
studied by Joshi [1972], who showed that on the basis of a random sample

X Xn from (103) the mvue of r is

1’ "0
R _ Alx,n,y+1)
(1.7) Bly,x) =y - Alx,n,y) - A(x,n,y+1)
where

X=X +* ... + X and = min{x osoy X
n J ( 1° ? n)

Interestingly enough, though © 1is not estimable in the case of a
finite-range distribution, it was shown that the probability function
itself (hence also the corresponding distribution function) of a PSD
truncated on the left is estimable, both when the truncation point r
is known, Patil [1963], or unknown, Joshi [1972].

The main difficulty, reflected even in the treatment of some special
cases of truncation away from zero (r=1), Tate and Goen [1958],
Cacoullos [1961], Patil and Bildikar [1966], Cacoullos and Charalambides
[1972a], lies in deriving an explicit or computationally attractive

expression for the distribution of the sufficient statistics, the sum.of



the observations; equivalently, to get around the evaluation of expres-
sions such as A(x,n,r) in (1.6).

The above difficulty was resolved by employing exponential gener-
ating function (egf) techniques, which emerge quite naturally in the
treatment of the aforementioned distribution problem, the n-fold convolu-
tion of a PSD truncated on the left at r(r z_l)o Indeed, Charalambides
[1972], [1973a], [1973b] and Cacoullos and Charalambides [1972b] show how
the egf technique provides a unified approach for a solution to the
problem of mvue of certain functions of 6 in (1.3), both when r is
known or unknown. At the same time, the treatment of truncated versions
of classical families of PSD's leads to natural extensions of certain
kinds of numbers; the Poisson family is.associated with generalized
Stirling numbers of the second kind, whereas the logarithmic series
distribution with Stirling numbers of the first kind (the well known
Stirling numbers correspond to the simple case of truncation away from
zero, i.e., r=l); finally, the binomial and negative binomial caszes led
to the introduction, Cacoullos and Charalambides [1972a], and extension,
Charalambides [1972], [1973al, of a new kind of numbers, called C-numbers.

The more general situation of truncatiocn at several known truncation
points, that is, (1.1) with ai(x} =alx), i=1, ..., k, motivated the

introduction of certain multiparameter Stirling and C-numbers, Cacoullos

[1973a] and [1973b). The mvue of 0% and the probability function itself
were given in terms of these multiparameter numbers, Cacoullos [1973c].
Here we consider the relevant distribution (Section 2) and estimation

problems (Sscticn 4) in the more general case of (1.1); especially, when



the truncation points are unknown, ai(x) = a(x) and

Toy osey T
1 > "k

N, =, i =1, ..., k. When p = ( see, T. ) is known, the mvue of

e k
pi(x) is also considered. In .Section 3 we review the multiparameter
Stirling numbers and, in particularn, the C-numbers emerging out of the

more general set up of different ai(x) for the binomial and negative
binomial distributions. Some of the results of this Section are based

on properties of the multiparameter Stirling and C-numbers, studied by
Cacoullos [1973b]. 1In Section 5, we exhibit several properties of condi-
tional distributions for PSD's and indicate how they can be employed to
provide confidence intervals for certain functions, in particular products
and quotients of the parameters. Applications, including confidence

interval estimation of attribute-fallure reliability models for multi-

component systems, are exhibited in Section 6.

2. CONVOLUTIONS OF LEFT-TRUNCATED PSD'S

Let Xij 2i=l, ..ok J=1l, oo, n, be independently distributed
with p.f.'s
ai(X) " x=r., 4L, L., Ny
{ = = I ecrtr——— -
(2.1) Pi(X> P[Xij x ] fi(e’ri) 07,

I = 1, ce0, N,
J H 2 i

where ai(x) is independent of the parameter 6 and the series function



converges in some interval 0 < 6 < Ps3 Ni may be finite or infinite

(i =1, ..., k). When the truncation points r, are known, the k-sample
sum
k%
x= ] I x,
j=1 s=1 *J

is a complete sufficient statistic for 6, since a PSD belongs to the
exponential family of distributions. It is easily shown that

(cf. Cacoullos and Charalambides, [1972])

Propositicn 2.1. The p.f. of X is given by

' c(x;v,p) g%
(2.2) PlX=x] = — —

B ———— X=m, m¥l, ..., M
gv(e98) x1 3 -] ] H
where we set V = (nl, , nk), p = (rl, o s I"k)9
( 3 = = A = e 0o
(2.3) m= DT, .. tn T (vop)ly M nBNl + + nka R

M e S k 1 ni
(2.4) g,(t.0) = ] clx;p,v) o 0ol (e,ry)] ;
< X=m i=1 i
moreover, the numbers c(x;v,p) have the representation
o : k4
(2.5) clasvep) = —E— T T T a(x,)
<% b oS L g1 1A



the summation extending over all n-tuples (n = nl + ... F nk) of

integers Xij such that

ki
Xij _)_ I“i izl jzl Xij = X

Suppose now that, in addition to 6, the truncation vector p is

~

unknown. Then by the results of Fraser [1952], a complete sufficient

statistic for (0,p) is (X.,Z2) = (X,le coos zk) where

~ ~

Z. = min {Xi_} i=1, .., k .
1<g<n,

For our purposes, we reguire the following

Definition 2.1. Let G{u) be a real-valued function with domain the

set of lattice points u = (ul, ceas U

~

k) with integer coordinates.

The kth-order partial difference of G(u), to be denoted by Au’ is

defined by

A G(E} = (Au Auk_

where Au denotes the usual forward difference operating on . U

i
that is,
(2.6) A G{u) = G(u+ei) - G(u) ,
i~ <2 ~
S5 denoting the ith coordinate axis unit vector (0,...,0,1,0,...,0)



The fcllowing lemma, of interest in itself, will be used in deriving

the p.f. of the sufficient statistic (X,Z).

Lemma 2.1. Let Q(u) denote the tail probability function of an integer-

valued random vector U = (U

U 15 coes Uk), that is,

Qlu) = P[U > w,y ocoy U > u ] 2 PIU > u]

Then

Proof: TFor k = 2, we have

PiU. =u

178 U7

o1 = Qluyu) - alu+l,u) - Q(ul,u2+l) + Qlu +l,u,41)
which, in view of (2.6), gives (2.7). For k > 2 the proof is analogous
{cf. the kth order partial difference AhF(g) of a k-variate continuous
distribution function F(g) which is used in the definition of the density

at u by letting h = (h,, ..., h_) > Q).

19

We can now state

Theorem 2.1, The distribution of the sufficient statistic (X,Z) is a PSD

(2.8)  Plx=x,Z=z] = 5 e (Vey) Sx <M, oz >0

where gv(egp) and e{x;z,p) are defined by (2.3) and (2.4).

~



Proof: Setting

(2.9) Qlz;x) = P[Z>z,X=x] ,
‘we obtain by Lemma 2.1

k
(2.10) PlX=x,Z=z] = (-1)"4 Q(z;x)

However, we have

where the summation extends over all n-tuples of integers

n,
lfi

X.,, > Z, and X.. = X »

i=1 j=1 9

Thus, by (2.3) and (2.4), Q{z;x) can be written as

~

(2.11) Qlz;x)

Hence, as AZ operates only on 3z, we have
A clxsz,v) o
AEQ(E;X) = —é;zgjgj——j;; ;

and (2.8) follows from (2.10).

X,

with



3. MULTIPARAMETER STIRLING AND C-NUMBERS

It was already mentioned in Section 1 that the present approach to
the distribution theory relating to mvue problems of a left-truncated PSD
was motivated by the results of the simple case of a Poisson distribution
truncated away from zero, which leads in a natural way to the well-known
Stirling numbers of the second kind ’S(x,n), with egf

)n

o

© tx 1 ¢
{ = —_— = = -
gxt> 2 S(xan) %1 ol (e 1
X=n

In the present notation, this corresponds to the Poisson series function
- : A
fl(ksl) = f(A,1) = e -1 (k=1)

The general case of truncation of a PSD distribution on the left at

several points vo0y T motivated (Cacoullos, 1973) the definition of

Tp» k

miltiparameter numbers; their egf is always of the general form (2.4).
Of special interest are the following cases:
a) Poisson: Here 0O is the Poisson parameter A and the PSD series

functions are

1i=1, veo, k .

The corresponding egf defines the multiparameter Stirling numbers of the
second kind Sk(x;p,v>; for k = 1 +they reduce to the generalized
Stirling numbers of the second kind S(x,ri,ni) considered by Charalambides
(1972); for k =1 and ri = 2 +they give the associated Stirling numbers

of the second kind (see Riordan [1958], p. T7)-.

- 10 -



Recurrence relations can be obtained by using the difference-differen-—

tial equation satisfied by the egf Gv(t,p), say, of the numbers S(x;p,v):

~ o~

where, as before, n = nl + .. + ny - In the sequel, we will require the

(x,y)—wise recurrence:
k x

(3.1) 8(x+l;p,v) = nS(x;0,V) + ) r 1) S(x—ri+l;gay—§i)
=1

b) Logarithmic series: Here we have

r.-1
1 eJ

£(0,r,) = - log(1-8) - ) 5 i=1, ..., k (r; > 1)
j:

where 0 < 8 < 1. The corresponding egf, hv(tsp), say, defines the multi-

~
~2

parameter signless Stirling numbers of the first kind, |s(x;p,v)|; the

numbers s(x;p,v), the multiparameter analogues of the usual Stirling

~

numbers of the first kind s(x;n), are generated by the basic series func-
tion log(l+8), instead of - log(l-8), and their egf is

n,
n
=)

% . tX
b (t,0) = ) sx;p.v) =

~ x!
X=1 1

o

5 ; ri—l 3 i
il —-J-'-—l:log(l-l-t) -7 ()t t—:'

g
1 l’lib j= J

The corresponding expansions {representations) of S(x;p,V) and

~ o~

|s(x30,v)| (ef. (2.4)) show that

~

s(x;p,V) = (—l)n'XIS$(X;g,\~>)I .

- 11 -



3; reduce to the usual

For k=1, r. =1, s(x,lsnl) and !s(x,l,nlé

1
Stirling and signless (positive) Stirling numbers of the first kind,
respectively.

Recurrence relations for s{x;p,v) and |s(x;p,v)| can be obtained

~ e

from the corresponding difference-differential equations satisfied by

% ,
their egf's hv(t,p) and hv(tep}, respectively:

q % % ri—l ri—l %
{ — -.p) = -1
(1+6) g byltp) = ) (-1 7 ¢ 7 n,  (t,p)
o~ i=1 ~ ~1
a k ri—l
G0 grayeel = Lov o n,, ()
~ i=1 ~ ~1
Thus we obtain the recurrences:
k r. -1
s{x+lsp,v) + x s{xzp,vi = § (=10 % (x) . (x-r +l3p,V-e.) ,
ne Y me L5 r.-L1 i il
1= 1
(3.2)
” 1 k
|s(x+ls0,vi] = xislx,ov)| + [ (x). _ |s(x-r +13v-e.,0)] .
<P =23 ety r, i ~ ~i°%
c) Binomial: Now we have
r,~-1 /s,
g, i i
fi(e,ri) = (1+0) ~ - Z g9 i=1, ..., k 8 = p/q
| 3=0 1\

{the s, denoting positive integers). The corresponding egf Hv(t,p)
£ ~
defines the multiparameter C-numbers C{x;p,v,0) with o = <Sl"°°’sk)°

The special simple case of k = 1 with 8y =g, n =n, r =1,

motivated the definition of the C-numbers Cz 0 (Cacoullos and
5



Charalambides [1972a]); in the present notation, we have

n X 1
(3.2a) Claslom,s) =57 C = o ]

Ie~15

("7 (3] ()
1 J X .
This explicit expression was obtained by elementary ocecupancy-model
arguments in obtaining the n-fold convolution of a binomial distribution
(with parameters s ana p = 0/(1+6)) truncated away from zero (also
referred to as positive binomial).
Recurrence relations for the C-numbers can be obtained from the

difference-differential equation (of Cacoullos, 1973)

a k (Si)ri r, -1
(3.3) (1+t) 3 H,(£,p,0) = (v,0) H (t,p,0) + BE G b By (£0,0).
~ ~ i=1 i ~ ~1

Thus an (x,v)-wise recurrence is

(3.4) Clx+l;p,v,0) = [(o,v)-x] Clx;5p,v,0)
k X

+ L o1 [(8y)y CleryHlip,-e; o)

i=1\"1 i

It should be noted that

Clx;p,V,0) =0 if x<m= (p,v)

and the C-numbers are positive integers for m < x < (v,0).

~ o~

- 13 -



d) Negative Binomial: Here we have

cees k

H
e
—
[ap]
v
La
e
g
i
—
'_I
1
[«pd
fS—
¥
|
I e~k
O
|
n
\-._H—/
i
|
-
S
.
@@
C x
}_l
1}
'...I
L0

(si >0 and O = p; for the Pascal distribution the s, are integers).

The corresponding egf defines the signless C-numbers

|c(x3p,v,-0) = (-1)* C(x;p,v,—c); the numbers C{x;p,v,-0) are defined

~o

~

by the egf Hv(u;p,—0>, that is, as in ¢) with O replaced by -0,

so that x has an infinite range of values

x > (p,V)

It can be shown, e.g. by using the analogues of (3.3} and (3.4), that

(3.5) |c(x+130,v,-0)] = [{o,v) + x]|cix;p,v-e ,-0)]
k X
+ 1l sy, ety #1s0,0-e, 200 |
=1 i i
It should be observed that in the special case k = 1, ry = 1, n, =mn,
8, = 8,
\ ~ r_1)* % n-3. n ,
C(Xslana"s) = nl D[,_ ("l> . (‘Sj—"*X_l)X >
3= 31

since in {3.2a) (sj)X must be replaced by (—sj)x = (—1)X(sj+x—l)xc
For additicnal recurrence relations and combinatorial interpretations

of the multiparameter Stirling and C-numbers, we refer to Cacoullos (1973b) .

- 1k -



b, MINIMUM VARTANCE UNBIASED ESTIMATION

For the construction of the mvue of a parametric function ¢(0,p)

N

it suffices to find an unbiased estimator ¢(x,z) which is a function of

~

the sufficient statistic (X,Z), whose distribution we considered in
Section 2. Extending the results of Patil [1963] and Joshi [1972]

congerning the case k = 1, or, by a close examination of the condition

of unbiasedness, as obtained by using the p.f. (2.8),
k . '
(4.1) L L (17 olx,2) Ajelxsz,v) o= g (6,p) 6(8,p)

we get the following

Theorem 4.1. On the basis of the k independent samples Xij’ i=l,...,k

J=l,...,n, from (2.1), a parametric function (0,p) has a mvue if, and

~

~

only if, for every p = (rl,coo,rk) and every 6, (a) the function

¢(6,B) gv(e,g) admits a power series expansion in 6, say

(h.2) 0(6,0) g,(8,0) = ) Cx;p,v) 5,

and (b) for each p the index set T of ¢(8,p) g

~

v(e,g) is a subset of

the index set of the series function gv(6,p), i.e. (see (2.2) and (2.3))

~

>

(L.3) v T ¢{m, m+1, ..., M} .

N

If ¢(x,z) exists, then it is given by

~

%
A,C (x32,v)

A%C(X;E,y)

°

(4.4) b(x,2) =

- 15 -



Proof: We have from (4.1), (4.2) and (2.4) for each p

X

*
v }oC o (x3p,v) 8,

I 5 (-1)° o(x,2) 4 Clxsz,v) 6 *
x>m z>p L~ o xeT

which will hold for all 0 if, and only if,

(—l}k d{x,z) A,G{x;z,v)v

~ Z ~ " ~ T~
~

(L.5)

i1

Q
—~

k]
we
O
-

<
S—

)
220

Applying the same argument involved in (2.9) and (2.10) to the function

Q(p) = | (-1)F ¢lx,z) A Clx;z,v)
220 ~ 2 ~o
we get from (4.5)
% %
AQ (p) = ¢(X,Q> Apc(X,Q,B) =AC (x,g,y) .

Since this holds for every p, (4.4) readily follows.

From the preceding thecrem, we have

Corollary L4.1. The truncation peint p = (rlacooark), as well as .
Co(a) _ o R < s ) T

P = (ri,caa,rk;, o > 0 integer, is always mvu eé;mmable; the mvue of

p(a> “is

N A lz5e(x32,v)]
4.6 g = — —
(.6) ‘Qa(x’%) Azc(x;z,v}

-~

=z, +
i Azc(xgg,y)

~

A, . elxsz+e, ,V) g-1 .
o (i) ~ <i’s (a) 29, i=1,....%
dJ

- 16 =



where A(i) denotes the (k-1)-order partial difference operator Il Az.
‘° SIS
It should be noted that the second expression in (L.L) gives the

"correction" term for the corresponding maximum likelihood estimate Zi

(63

o

of r? to yield an unblased estimate of r

Corollary 4.2 The probability functions pi(ri+j) in (1.1) are mvu

estimable and the mvue of pi(ri+j) is given by

A [(X)Zi+jg(x—zi—j,g,y—gi)] J>0

(L.7) 5,(ru+j;X,Z) = a,{z, +j) : ;
itTi ~ i1 niAE c(x,E,B) i=1,... %

hence the corresponding distribution functions are also mvu estimable.
As in the case of known truncation points, it is observed that condi-
tion (L.4) is not satisfied if all the Ni in (1.1) are finite and the

barameter to be estimated is 0. Howsver, we have the following

Corollary L4.3. For any integer o > o, 0% is mvu estimable if at least

one of the Ni in (1.1) is infinite; that is, at least one. of the
distributions pi(x) has range equal to the tail set of r,. Then the

mvue of 6% is given by

Ayelx~asz,y)

/ | a Vo= = ;
(1.8) Pzl = 1)y ey

~

for V2P, XxX>m.

In particular, the mvue of 6 is

A cl{x-03z,v)

(4.9)

@>
o~
]

w

N
St
n
»

> |

< (X;Za}))

- 17 -



For comparison purposes, we give the corresponding estimates of Ga
and pi(x) obtained by Cacoullos [1973c] when the truncation points

r . are known. They are

1°°° k

c(x—a;@,g)

(4.10) Gd(x) = (X)a —Ezgzéjgj— X >

dlx-r.-3;p,v-e,
x-7,=330,V-€,

. n P = { + 3 -
(4.11) p, (r ;+35x) = &, (r +]) é(x;3p,V) 1y

for i =1,...5K -

Tt is interesting to observe that the role of d(x;g,y) wvhen o 1is
known. is played by (—l)kAZc(x;5,¥) when p is estimated. The mvue of
the estimable parametric f;nctions in specific situations are obtained
from the preceding general expressions by replacing the numbers c(x;%,y)
by their analogues in each ca;e: in the Poisson case, @(x;g,g} = S(x;%,y)
(the multiparameter Stirling number of the second kind); in the logarithmic
series distribution, c(x;g,y) = |s(x;z,v)| (the multiparameter signless
Stirling numbers of the first kind); in the binomial case, c(x;%,g) =
C(x;g,y,g) (the multiparameter C-numbers); in the negative binomial case,
C(X5E’Y) = lC(x;E,Y,-g)! (the multiparameter signless C-numbers).

In certain cases, the mvue obtain a more illuminating form by using
some of the recurrence relations given in Section 3. Thus the mvue of the

Poisson parameter A can be written, by using the recurrence (3.1), as

follows:

- 18 -



~ k Jx-1\ S(x-r,;0,v-e.) ~
A R STere :))~l = opr (=)
i=1 \ T BRRLY ©
when p 1is known, and
k Jx-1\ B{x-r_;z,v-e,)
AMx,z) =2]1- ¥ RS S e (x)
i n sop \TyL Blx;z,V) 2% >

when p is estimated, where we set B(x;z,v) = (—l)kAZS(x;z,v) and

~

Xo(x) = x/n = x denotes the usual mvue of A wunder no truncation, i.e.,

p=(0,0,...,0); ¢, end ¢, may be regarded as the correction factors

by which Xo(x) must be multiplied to give the corresponding estimate of
A under truncation on the left at a known or unknown point p,
respectively. It should be noted that ijlf}, Of@zf;o Similarly, in

the negative binomial case the mvue of 6 {the usual p) can be written,

by using the recurrence {3.5), as follows:

k
G(X) = (gsy);@"x—"l Ll - 12

when p is known, and a similar expression with IC(X;Q,V,—G)I replaced

~

~

by AZIC(x;zav,—O)I when o 1is estimated. In both cases, 6 takes the

~
~

form

o (0,v)+x-1

”~

where © is the usual mvue of 6 in the absence of truncation and c,

o}
o <c¢c <1, the corresponding correction factor.

- 19 -



D SOME CONDITIONAL-DISTRIBUTION PROPERTIES OF A PSD

In the present section, we state certain properties of conditional
distributions of PSD's; some of these properties have been used for
confidence interval estimation of the reliability of multicomponent
attribute-failure models in certain special cases such as the negative
binomial (Hwang and Buehler [1973]) and the Poisson distributions (Harris
[1971]); apparently, however, the general underlying property for PSD's
has not béen explicitly stated. The following property is basically a

consequence of the exponential structure of a PSD.

Proposition 5.1. Let X oosX, and Y N S o1 independently

1*° 8 1°° k
distributed each according to a PSD and let
ai(x) X
P[Xi:x] "I T M x e 8 i=1, .., 8 .,
i*i
(5.1) ‘
b, {yJ v
P[Yj=y]=41——-—Bg(u)uj yeTj J =1, coos k

where the sets Si and Tj are subsets of the set IO of non-negative

integers and each of the series functions

. x
A (M) = ] e dx)NT, B(u)= T b (ynd
i1 i i J 75 de g J
XES, yeT |
i J
converges in some interval: 0 < Xi < Li’ 0 < uj < Mj (i=1,...,s ,

3=, ... .k).
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Define

U.)

U, =X, - X i=2,...,58 , U = (Ug,oec, <

(5.2)

V., =Y, +X J=1,...,k , y=(ﬁﬂmﬂﬁ.

Then the conditional distribution of Xl- given U = (ug,en.,us) =y and

V = (Vl,,ea,vk) = v 1s a one-parameter PSD with parameter

and probability function

d(x;u,v)
(5.3) D (x%:u,v) =_______“_'_¢_ZL_9X
6 >’ D(B3u,v)
with series function
D(Osu,v) = N d(x,g,y)ex
xeT
s k
d(xsu,v) =a,(x) I aflu,+x) I b, (v, -x)
~ 1 R A
i=2 d=1

where the range T of x is determined by the ranges Si’ Tj and the

values of the conditioning variables

g

and v.
The proof is strailghtforward and is therefore omitted. It is observed

that the conditional distribution (5.3, depends only on the parameter 6,
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9

not on the individual Ai s and uj'so The disappearance of all nuisance
parameters is guaranteed by the general result of Lehmann and Scheffé (see
Lehmann, 1959, Ch. 2, Lemma 8) concerning exponential families. It follows,
furthermore, that the theory of uniformly mcst powerful unbiased tests and
corresponding uniformly most accurate unbiased confidence intervals
(Lehmann, 1959, Ch. 4) can be applied for inferences about 6.

Another conditional distribution afises in relation to making
inferences about 0 1n the presence of unknown truncation points playing
the role of nuisance parameters. Since in applications, especially in

reliability of attribute-failure models (Hwang and Buehler [1973], Harris

(197113,

we are going to consider conditional distributions given only U, i.e.
with conditicning variables differences of Xqu; in the preceding

Proposition 5.1, this would lead to a PSD with p.f. (of X given y=p)

1
1 o d(xsul
{5.4) 'PA(X;E) = ﬁrxtaj'k
where

dlx3u) = a, (x) I aﬁ(ui+x) ,  D(izu) =) dlxsun®
= x

Proposition 5.2. Let Xij i=l,..00,8, j=l,ccc5ni be independently

distributed with p.f.'s
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®

W

2
it

< ri,ri+l,coo,Ni
PIX, =x] = g ] :
€ i1 1 i=1,...,8

Then the statistics

]
.

1
X, = ) X, W, = min{X, .} i ce,5
2 i . i

J

define a complete sufficient statistic for the parameter set

{el,m,c,ek, rl,.,.,rk} and the conditional distribution of X, given

W=ws= (wi,abo,ws) and U=mu (g defined as in (5.2)) is 8 one-parameter
PSD with parameter A = Al,oca,ks and p.f.

%

pv(x;u,w) A X
(5.5) pxsu,w) = e« 2

¢ {Aju,w)

vhere max[W , max (WQ—Ui}] <x < mln{Nl,Ng—uzs'Mo,NS—uS“}9 and
2<]1<s
*( ) = A ( ) ; A ( ) .
] . = . c 5 . —_—
€ XU,V w CLVEIW ey BBy S lErug W, L0, ) T
1 i=2 i i
% ® X

Proof. We have

s
= o= = + =
X,Wi Wl] I P[Xi u, X,Wi Wi]

P[Xl=x,g=g,g=gj = P[X
i=2

1

since the pairs (Xl, l),aoa,(Xé,Ws) are independently distributed.
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applying Theorem 2.1 with k=1 for each {Xi,wi), we obtain

( ) ( ot u, +x
) Awlcl x3W) o0, ) Ai < Awicm\ui x,wi,nc) Ail
PIX =x,U=u,W=w] = (-1)" 7 — = I :
o~ I A L, +
1 gnlkkl,rlf =0 gni(Klarl) (u, +x)1

with AW operating only on w, (i=l,...,s). Similarly, by Theorem 2.1,

L
the joint distribution of U and W is

Kk ui+k
o < Aml(kgwianl) el s Acl(ul+k;W ,nl) Gi
PlU=u, W=y} = L (-1) (A ,r.) k¢ I (A, ,r.) (u,+k )1
k SRS fy=p 8 > i

&0 that (5.5) follows.

6. SOME APPLICATIONS

Here we indicate some applications c¢f the results given in the
preceding sections. The first kind of applicaticns concern the mvu esti-
mation of parameters invelved in a PSD truncated on the left. This calls
for the theory develeoped in Sections 2, 3, and especially, L. The second
kind relates to testing hypotheses and constructing confidence intervals
for products and/or quotients of a number of parameters, each sssociated
with a distribution, usually, of the same family. This was already briefly
discussed in the preceding section.

As regards the first kind of applications, there are many practical
situations in which sampling is naturally restricted to truncated PSD's,
especially the classical cnes: Poisson, binomial and negative binomial,
with typical truncation away from zerc. For example, a multiply truncated

Poisson may arise, e.g., in estimating the accident rate A on the basis



of reports from several sources (localities9 factories, etc.) where source
i provides relevant informetion only if at least certain number ry of
accidents occur; r, may be fixed and known or unspecified. Other
examples in which left-truncated Pcisson, as well as binomial or negative
binomial distributions, may sarise can be found in the statistical litera—
ture and some of the references given in this article.

We givé'an application in the area of reliability of multi-component
systems. It is assumed that each of the m, say, components of a complex
' system (a missile, an aircraft, a computer, etc.) can only either perform
or fail so that the system reliability in this so-called attribute failure
model can be expressed as a function of Bernoulli parameters. Consider
the reliability of a "k-out-of-m system" (see, e.g., Birnbaum et al. [1961])
which consists of m components and will function properly 1f at least k
out of m components function,where 1 <k <m; k=1 corresponds to a
parallel system and k = m to a series system. The reliébility of such a
system with m independent identical compconents is given by the tail |

binomial probability function
w
my i m-i
(6.1) R_= E( )p (1-p)

where p 1s the reliability of each compcnent. Suppose observations (of
the number of failing components) are available for such k-out-of-m
systems;'then the mvu estimation of Rk provides an application of the
theory of Section 4 (see (4.11)). It should be observed that if we were

simply inﬁerested in a confidence interval for Rk = Rk(p), then it would
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be possible to convert a confidence interval for p to a corresponding
one for Rk(p), which is an increasing function of pf

Moreover, in certain situations it may be assumed that data for such
k-ocut-of-m systems are avallable only under the condition that at least
r, 1<r<k, of the m components function in all:instances. Then the
corresponding (conditional) reliability of the system is given in terms

of R_ by

=

* k
R. =1 < <
r

Thus in effect we arrive at a truncated binomial model, where we sample

from a left-truncated probability function

(ﬁ) p(1-p)"¥

R
r

P[x=x] = X = Fyeoosll

#
Then in estimating Rr we can use the mvue based on (L4.11) or (L.7),
depending on whether r is known or unknown.

With respect to tests of hypotheses and confidence intervals for
products of parameters cf PSD's, we recall the application of Harris
[1971] to products cf Poisson parameters; in an attribute failure model
it is assumed that component i fails with probability P; s i=1,.,.,k
and hence the reliability of a parallel or series system can be studied
in terms of the product PyPye- P 3 if component i is tested separately
ng times, then for "large" n, end D, "small", the problem can be

reformulated in terms of the product A = A_A A where A

oo e . = n,p., is
12 'k i 1p1
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the parameter of the ith Poisson distribution which approximates the ith
binomial (ni,pi), i=1,...,m. The theory of Section 5 for constructing
uniformly most powerful unbiased tests and corresponding uniformly most
accurate unbiased confidence intervals applies to such products of Poisson
Parameters even when the underlying Poisson distributions are left—
truncated at different known\or unknown truncation points. When the
truncation Points rl,oec,rk are known Proposition 5.1 applies, and when
they are unknown Proposition 5.2 applies; note, however, that the latter
case requires teking more than one observation from each of the k Poisson

distributions.
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